research areas
publications
opportunities
research areas publications opportunities
Structural reversability
Structural reversibility of Cu doped NU-1000 MOFs under hydrogenation conditions

A. Halder, S. Lee, B. Yang, M. J. Pellin, S. Vajda, Z. Li, Y. Yang, O. K. Farha, and J. T. Hupp

DOI: 10.1063/1.5130600

Methane to Methanol
Quantum Chemical Characterization of Structural Single Fe(II) Sites in MIL-Type Metal–Organic Frameworks for the Oxidation of Methane to Methanol and Ethane to Ethanol

J. G. Vitillo, A. Bhan, C. J. Cramer, C. C. Lu, and L. Gagliardi

DOI: 10.1021/acscatal.8b04813

Ethylene Oligomerization at Low Pressure
Metal–Organic Framework Supported Single Site Chromium(III) Catalyst for Ethylene Oligomerization at Low Pressure and Temperature

T. A. Goetjen, X. Zhang, J. Liu, J. T. Hupp and O. K. Farha

DOI: 10.1021/acssuschemeng.8b05524

Schrodingers Catalyst
Computational Design of Functionalized Metal–Organic Framework Nodes for Catalysis

V. Bernales, M. A. Ortuno, D. G. Truhlar, C. J. Cramer, and L. Gagliardi

DOI: 10.1021/acscentsci.7b00500

Methane Oxidation
Methane Oxidation to Methanol Catalyzed by Cu-Oxo Clusters Stabilized in NU-1000 Metal–Organic Framework

T. Ikuno, J. Zheng, A. Vjunov, M. Sanchez-Sanchez, M. A. Ortuño, D.R. Pahls, J.L. Fulton, D. M. Camaioni, Z. Li, D. Ray, B.L. Mehdi, N.D. Browning, O.K. Farha, J. T. Hupp, C. J. Cramer, L. Gagliardi, and J. A. Lercher

DOI: 10.1021/jacs.7b02936

MOF Supported Cobalt Catalysts
Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

Z. Li, A. W. Peters, V. Bernales, M. A. Ortuño, N. M. Schweitzer, M. R. DeStefano, L. C. Gallington, A.E. Platero-Prats, K. W. Chapman, C. J. Cramer, L. Gagliardi, J. T. Hupp, and O. K. Farha

DOI: 10.1021/acscentsci.6b00290

Adding to the Arsenal of Zirconium-Based Metal–Organic Frameworks
Adding to the Arsenal of Zirconium-Based Metal–Organic Frameworks: the Topology as a Platform for Solvent-Assisted Metal Incorporation

T.-F. Liu, N. A. Vermeulen, A.J. Howarth, P. Li, A.A. Sarjeant, J. T. Hupp, and O. K. Farha

DOI: 10.1002/ejic.201600627

publications

2021


  1. S. Zhuang, H. Huang, Y. Xiao, Z. Zhang, J. Tang, B. C. Gates, and D. Yang,“Pair Sites on Al3O Nodes of the Metal–Organic Framework MIL-100: Cooperative Roles of Defect and Structural Vacancy Sites on Methanol Dehydration Catalysis,“ J. Catal., 2021, 404 , 128-138.
    DOI: 10.1016/j.jcat.2021.09.006

  2. M. Babucci, A. S. Hoffman, S. R. Bare, and B. C. Gates, “Characterization of Metal-Organic Framework Zr6O8 Node-Supported Atomically Dispersed Iridium Catalyst for Ethylene Hydrogenation by X-ray Absorption Near Edge Structure and Infrared Spectroscopies,“ J. Phys. Chem. C, 2021, 125 (31), 16995-17007.
    DOI: 10.1021/acs.jpcc.1c03563

  3. J. L. Mancuso, C. A. Gaggioli, L. Gagliardi, and C. H. Hendon, “Singlet-to-Triplet Spin Transitions Facilitate Selective 1-Butene Formation during Ethylene Dimerization in Ni(II)-MFU-4l,“ J. Phys. Chem. C, web publication date October 1, 2021.
    DOI: 10.1021/acs.jpcc.1c07658

  4. M.C. Simons, S.D. Prinslow, M. Babucci, A. S. Hoffman, J. Hong, J. G. Vitillo, S. R. Bare, B. C. Gates, C. C. Lu, L. Gagliardi, and A. Bhan, “Beyond Radical Rebound: Methane Oxidation to Methanol Catalyzed by Iron Species in Metal–Organic Framework Nodes,“ J. Am. Chem. Soc., 2021, 143 (31), 12165–12174.
    DOI: 10.1021/jacs.1c04766

  5. Y. Xiao, L. Han, L. Zhang, B. C. Gates, and D.Yang, “Pair Sites on Nodes of Metal–Organic Framework hcp UiO-66 Catalyze tert-Butyl Alcohol Dehydration,“ J. Phys. Chem. Lett., 2021, 12 (26), 6085–6089.
    DOI: 10.1021/acs.jpclett.1c01574

  6. X. Fu, J. Liu, S. Kanchanakungwankul, X. Hu, Q. Yue, D. G. Truhlar, J. T. Hupp, and Y. Kang, “Two-Dimensional Pd Rafts Confined in Copper Nanosheets for Selective Semihydrogenation of Acetylene,“ Nano Lett., 2021, 21 (13), 5620-5626.
    DOI: 10.1021/acs.nanolett.1c01124

  7. J. G. Vitillo and L. Gagliardi, “Thermal Treatment Effect on CO and NO Adsorption on Fe(II) and Fe(III) Species in Fe3O-Based MIL-Type Metal–Organic Frameworks: A Density Functional Theory Study,“ Inorg. Chem., 2021, 60 (16) 11813–11824.
    DOI: 10.1021/acs.inorgchem.1c01044

  8. H. J. Kulik, “What's Left for a Computational Chemist To Do in the Age of Machine Learning?,“ Isr. J. Chem., Article ASAP, Web Publication Date April 15, 2021.
    DOI: 10.1002/ijch.202100016

  9. Z. Chen, Z. Chen, O. K. Farha, and K.W. Chapman, “Mechanistic Insights into Nanoparticle Formation from Bimetallic Metal–Organic Frameworks,“ J. Am. Chem. Soc., 2021, 143 (24), 8976-8980.
    DOI: 10.1021/jacs.1c04269

  10. J. G. Vitillo and L. Gagliardi, “Modeling Metal Influence on the Gate Opening in ZIF-8 Materials,“ Chem. Mater., 2021, 33 (12) 4465-4473.
    DOI: 10.1021/acs.chemmater.1c00623

  11. D. S. King and L. Gagliardi, “A Ranked-Orbital Approach to Select Active Spaces for High-Throughput Multireference Computation,“ J. Chem. Theory Comput., 2021, 17 (5), 2817–2831.
    DOI: 10.1021/acs.jctc.1c00037

  12. D. Yang and B. C. Gates, “Elucidating and Tuning Catalytic Sites on Zirconium- and Aluminum-Containing Nodes of Stable Metal–Organic Frameworks,“ Acc. Chem. Res., 2021, 54 (8), 1982-1991.
    DOI: 10.1021/acs.accounts.1c00029

  13. Z. Lu, R. Wang, Y. Liao, O. K. Farha, W. Bi, T. R. Sheridan, K. Zhang, J. Duan, J. Liu, and J. T. Hupp, “Isomer of linker for NU-1000 yields a new she-type, catalytic, and hierarchically porous, Zr-based metal–organic framework,“ Chem. Commun., 2021, 57 (29), 3571-3574.
    DOI: 10.1039/D0CC07974J

  14. Y. Chen, X. Zhang, X. Wang, R. J. Drout, M. R. Mian, R. Cao, K. Ma, Q. Xia, Z. Li, and O. K. Farha, “Insights into the Structure–Activity Relationship in Aerobic Alcohol Oxidation over a Metal–Organic-Framework-Supported Molybdenum(VI) Catalyst,“ J. Am. Chem. Soc., 2021, 143 (11), 4302-4310.
    DOI: 10.1021/jacs.0c12963

  15. K.-i. Otake, S. Ahn, J. Knapp, J. T. Hupp, J. M. Notestein, and O. K. Farha, “Vapor-Phase Cyclohexene Epoxidation by Single-Ion Fe(III) Sites in Metal–Organic Frameworks,“ Inorg. Chem., 2021, 60 (4), 2457-2463.
    DOI: 10.1021/acs.inorgchem.0c03364

  16. X. Zhang, M. C. Wasson, M. Shayan, E. K. Berdichevsky, J. Ricardo-Noordberg, Z. Singh, E. K. Papazyan, A. J. Castrof, P. Marino, Z. Ajoyan, Z. Chen, T. Islamoglu, A. J. Howarth, Y. Liu, M. B. Majewski, M. J. Katz, J. E. Mondloch, and O. K. Farha, “A historical perspective on porphyrin-based metal–organic frameworks and their applications,“ Coord. Chem. Rev., 2021, 429, article no. 213615.
    DOI: 10.1016/j.ccr.2020.213615

  17. J. P. Janet, C. Duan, A. Nandy, F. Liu, and H. J. Kulik, “Navigating Transition-Metal Chemical Space: Artificial Intelligence for First-Principles Design,“ Acc. Chem. Res., 2021, 54 (3), 532-545.
    DOI: 10.1021/acs.accounts.0c00686

  18. Z. Chen, M. C. Wasson, R. J. Drout, L. Robison, K. B. Idrees, J. G. Knapp, F. A. Son, X. Zhang, W. Hierse, C. Kühn, S. Marx, B. Hernandez, and O. K. Farha, “The state of the field: from inception to commercialization of metal–organic frameworks,“ Faraday Discuss., 2021, 225, 9-69.
    DOI: 10.1039/D0FD00103A

  19. J. G. Vitillo, C. C. Lu, C. J. Cramer, A. Bhan, and L. Gagliardi, “Influence of First and Second Coordination Environment on Structural Fe(II) Sites in MIL-101 for C–H Bond Activation in Methane,“ ACS Catal., 2021, 11 (2), 579-589.
    DOI: 10.1021/acscatal.0c03906



2020


  1. A. Nandy and H. J. Kulik, “Why Conventional Design Rules for C–H Activation Fail for Open-Shell Transition-Metal Catalysts,“ ACS Catal., 2020, 10 (24), 15033-15047.
    DOI: 10.1021/acscatal.0c04300

  2. K. E. Hicks, A. S. Rosen, Z. H. Syed, R. Q. Snurr, O. K. Farha, and J. M. Notestein, “Zr6O8 Node-Catalyzed Butene Hydrogenation and Isomerization in the Metal–Organic Framework NU-1000,“ ACS Catal., 2020, 10 (24), 14959-14970.
    DOI: 10.1021/acscatal.0c03579

  3. Y. Yang, X. Zhang, S. Kanchanakungwankul, Z. Lu, H. Noh, Z. H. Syed, O. K. Farha, D. G. Truhlar, and J. T. Hupp, “Unexpected “Spontaneous” Evolution of Catalytic, MOF-Supported Single Cu(II) Cations to Catalytic, MOF-Supported Cu(0) Nanoparticles,“ J. Am. Chem. Soc., 2020, 142 (50), 21169-21177.
    DOI: 10.1021/jacs.0c10367

  4. Z. Lu, J. Liu, X. Zhang, Y. Liao, R. Wang, K. Zhang, J. Lyu, O. K. Farha, and J. T. Hupp, “Node-Accessible Zirconium MOFs,“ J. Am. Chem. Soc., 2020, 142 (50), 21110-21121.
    DOI: 10.1021/jacs.0c09782

  5. R. A. Hackler, R. Pandharkar, M. S. Ferrandon, I. S. Kim, N. A. Vermeulen, L. C. Gallington, K. W. Chapman, O. K. Farha, C. J. Cramer, J. Sauer, L. Gagliardi, A. B. F. Martinson, and M. Delferro, “Isomerization and Selective Hydrogenation of Propyne: Screening of Metal–Organic Frameworks Modified by Atomic Layer Deposition,“ J. Am. Chem. Soc., 2020, 142 (48), 20380–20389.
    DOI: 10.1021/jacs.0c08641

  6. Z. Wang, M. Babucci, Y. Zhang, Y. Wen, L. Peng, B. Yang, B. C. Gates, and D. Yang, “Dialing in Catalytic Sites on Metal Organic Framework Nodes: MIL-53(Al) and MIL-68(Al) Probed with Methanol Dehydration Catalysis,“ ACS Appl. Mater. Interfaces, 2020, 12 (47), 53537-53546.
    DOI: 10.1021/acsami.0c16559

  7. J. L. Bao, B. K. Welch, I. S. Ulusoy, X. Zhang, X. Xu, A. K. Wilson, and D. G. Truhlar, “Predicting Bond Dissociation Energies and Bond Lengths of Coordinatively Unsaturated Vanadium–Ligand Bonds,“ J. Phys. Chem. A, 2020, 124 (47), 9757-9770.
    DOI: 10.1021/acs.jpca.0c06519

  8. Y. Zhu, J. Zheng, J. Ye, Y. Cui, K. Koh, L. Kovarik, D. M. Camaioni, J. L. Fulton, D. G. Truhlar, M. Neurock, C. J. Cramer, O. Y. Gutiérrez, and J. A. Lercher, “Copper-zirconia interfaces in UiO-66 enable selective catalytic hydrogenation of CO2 to methanol,“ Nat. Commun, 2020, 11, article no. 5849.
    DOI: 10.1038/s41467-020-19438-w

  9. M. Babucci, A. Guntida, and B. C. Gates, “Atomically Dispersed Metals on Well-Defined Supports including Zeolites and Metal–Organic Frameworks: Structure, Bonding, Reactivity, and Catalysis,“ Chem. Rev., 2020, 120 (21), 11956-11985.
    DOI: 10.1021/acs.chemrev.0c00864

  10. F. Müller, J. B. Stückrath, F. A. Bischoff, L. Gagliardi, J. Sauer, S. Debnath, M. Jorewitz, and K. R. Asmis, “Valence and Structure Isomerism of Al2FeO4+: Synergy of Spectroscopy and Quantum Chemistry,“ J. Am. Chem. Soc., 2020, 142 (42), 18050-18059.
    DOI: 10.1021/jacs.0c07158

  11. Z. H. Syed, F. Sha, X. Zhang, D. M. Kaphan, M. Delferro, and O. K. Farha, “Metal–Organic Framework Nodes as a Supporting Platform for Tailoring the Activity of Metal Catalysts,“ ACS Catal., 2020, 10 (19), 11556-11566.
    DOI: 10.1021/acscatal.0c03056

  12. D. Yang, M. Babucci, W. H. Casey, and B. C. Gates, “The Surface Chemistry of Metal Oxide Clusters: From Metal–Organic Frameworks to Minerals,“ ACS Cent. Sci., 2020, 6 (9), 1523-1533.
    DOI: 10.1021/acscentsci.0c00803

  13. T. A. Goetjen, J. Liu, Y. Wu, J. Sui, X. Zhang, J. T. Hupp, and O. K. Farha, “Metal–organic framework (MOF) materials as polymerization catalysts: a review and recent advances,“ Chem. Commun., 2020, 56, 10409-10418.
    DOI: 10.1039/D0CC03790G

  14. K. Ma, K. B. Idrees, F. A. Son, R. Maldonado, M. C. Wasson, X. Zhang, X. Wang, E. Shehayeb, A. Merhi, B. R. Kaafarani, T. Islamoglu, J. H. Xin, and O. K. Farha, “Fiber Composites of Metal–Organic Frameworks,“ Chem. Mater., 2020, 32 (17), 7120–7140.
    DOI: 10.1021/acs.chemmater.0c02379

  15. M. Mandal, C. J. Cramer, D. G. Truhlar, J. Sauer, and L. Gagliardi, “Structure and Reactivity of Single-Site Vanadium Catalysts Supported on Metal-Organic Frameworks,“ ACS Catal., 2020, 10 (17), 10051-10059.
    DOI: 10.1021/acscatal.0c02300

  16. C. Gropp, S. Canossa, S. Wuttke, F. Gándara, Q. Li, L. Gagliardi, and O. M. Yaghi, “Standard Practices of Reticular Chemistry,“ ACS Cent. Sci., 2020, 6 (8), 1255-1273.
    DOI: 10.1021/acscentsci.0c00592

  17. X. Wang, X. Zhang, R. Pandharkar, J. Lyu, D. Ray, Y. Yang, S. Kato, J. Liu, M. C. Wasson, T. Islamoglu, Z. Li, J. T. Hupp, C. J. Cramer, L. Gagliardi, and O. K. Farha, “Insights into the Structure–Activity Relationships in Metal–Organic Framework-Supported Nickel Catalysts for Ethylene Hydrogenation,“ ACS Catal., 2020, 10 (16), 8995-9005.
    DOI: 10.1021/acscatal.0c01844

  18. R. M. Bullock, J. G. Chen, L. Gagliardi, P. J. Chirik, O. K. Farha, C. H. Hendon, C. W. Jones, J. A. Keith, J. Klosin, S. D. Minteer, R. H. Morris, A. T. Radosevich, T. B. Rauchfuss, N. A. Strotman, A. Vojvodic, T. R. Ward, J. Y. Yang, and Y. Surendranath, “Using nature’s blueprint to expand catalysis with Earth-abundant metals,“ Science, 2020, 369 (6505), article no. eabc3183.
    DOI: 10.1126/science.abc3183

  19. K. Zhang, J. H. Cha, S. Y. Jeon, K. O. Kirlikovali, M. Ostadhassan, V. Rasouli, O. K.Farha, H. W. Jang, R. S. Varma, and M. Shokouhimehr, “Pd modified prussian blue frameworks: Multiple electron transfer pathways for improving catalytic activity toward hydrogenation of nitroaromatics,“ Mol. Catal., 2020, 492, article no. 110967.
    DOI: 10.1016/j.mcat.2020.110967

  20. L. R. Redfern, W.-S. Lo, I. J. Dillingham, J. G. Eatman, M. R. Mian, C.-K. Tsung, and O. K. Farha, “Enhancing Four-Carbon Olefin Production from Acetylene over Copper Nanoparticles in Metal–Organic Frameworks,“ ACS Appl. Mater. Interfaces, 2020, 12 (28), 31496-31502.
    DOI: 10.1021/acsami.0c08244

  21. L. Chen, J. Ye, Y. Yang, P. Yin, H. Feng, C. Chen, X. Zhang, M. Wei, and D. G. Truhlar, “Catalytic Conversion Furfuryl Alcohol to Tetrahydrofurfuryl Alcohol and 2-Methylfuran at Terrace, Step, and Corner Sites on Ni,“ ACS Catal., 2020, 10 (13), 7240–7249.
    DOI: 10.1021/acscatal.0c01441

  22. J. Zheng, I. Lee, E. Khramenkova, M. Wang, B. Peng, O. Y. Gutiérrez, J. L. Fulton, D. M. Camaioni, R. Khare, A. Jentys, G. L. Haller, E. A. Pidko, M. Sanchez‐Sanchez, and J. A. Lercher, “Importance of Methane Chemical Potential for Its Conversion to Methanol on Cu‐Exchanged Mordenite,“ Chem. - Eur. J., 2020, 26 (34), 7563-7567.
    DOI: 10.1002/chem.202000772

  23. H. Shabbir, S. Pellizzeri, M. Ferrandon, I. S. Kim, N. A. Vermeulen, O. K. Farha, M. Delferro, A. B. F. Martinson, and R. B. Getman, “Influence of spin state and electron configuration on the active site and mechanism for catalytic hydrogenation on metal cation catalysts supported on NU-1000: insights from experiments and microkinetic modeling,“ Catal. Sci. Technol., 2020, 10 (11), 3594-3602.
    DOI: 10.1039/D0CY00394H

  24. E. Aprà, E. J. Bylaska, W. A. de Jong, N. Govind, K. Kowalski, T. P. Straatsma, M. Valiev, H. J. J. van Dam, Y. Alexeev, J. Anchell, V. Anisimov, F. W. Aquino, R. Atta-Fynn, J. Autschbach, N. P. Bauman, J. C. Becca, D. E. Bernholdt, K. Bhaskaran-Nair, S. Bogatko, P. Borowski, J. Boschen, J. Brabec, A. Bruner, E. Cauët, Y. Chen, G. N. Chuev, C. J. Cramer, J. Daily, M. J. O. Deegan, T. H. Dunning Jr., M. Dupuis, K. G. Dyall, G. I. Fann, S. A. Fischer, A. Fonari, H. Früchtl, L. Gagliardi, J. Garza, N. Gawande, S. Ghosh, K. Glaesemann, A. W. Götz, J. Hammond, V. Helms, E. D. Hermes, K. Hirao, S. Hirata, M. Jacquelin, L. Jensen, B. G. Johnson, H. Jónsson, R. A. Kendall, M. Klemm, R. Kobayashi, V. Konkov, S. Krishnamoorthy, M. Krishnan, Z. Lin, R. D. Lins, R. J. Littlefield, A. J. Logsdail, K. Lopata, W. Ma, A. V. Marenich, J. Martin del Campo, D. Mejia-Rodriguez, J. E. Moore, J. M. Mullin, T. Nakajima, D. R. Nascimento, J. A. Nichols, P. J. Nichols, J. Nieplocha, A. Otero-de-la-Roza, B. Palmer, A. Panyala, T. Pirojsirikul, B. Peng, R. Peverati, J. Pittner, L. Pollack, R. M. Richard, P. Sadayappan, G. C. Schatz, W. A. Shelton, D. W. Silverstein, D. M. A. Smith, T. A. Soares, D. Song, M. Swart, H. L. Taylor, G. S. Thomas, V. Tipparaju, D. G. Truhlar, K. Tsemekhman, T. Van Voorhis, Á. Vázquez-Mayagoitia, P. Verma, O. Villa, A. Vishnu, K. D. Vogiatzis, D. Wang, J. H. Weare, M. J. Williamson, T. L. Windus, K. Woliński, A. T. Wong, Q. Wu, C. Yang, Q. Yu, M. Zacharias, Z. Zhang, Y. Zhao, and R. J. Harrison, “NWChem: Past, present, and future,“ J. Chem. Phys., 2020, 152 (18), article no. 184102.
    DOI: 10.1063/5.0004997

  25. T. E. Webber, S. P. Desai, R. L. Combs, S. Bingham, C. C. Lu, and R. L. Penn, “Size Control of the MOF NU-1000 through Manipulation of the Modulator/Linker Competition,“ Cryst. Growth Des., 2020, 20 (5), 2965-2972.
    DOI: 10.1021/acs.cgd.9b01590

  26. D. Yang, C. A. Gaggioli, D. Ray, M. Babucci, L. Gagliardi, and B. C. Gates, “Tuning Catalytic Sites on Zr6O8 Metal Organic Framework Nodes via Ligand and Defect Chemistry probed with t-Butyl Alcohol Dehydration to Isobutylene,“ J. Am. Chem. Soc., 2020, 142 (17), 8044-8056.
    DOI: 10.1021/jacs.0c03175

  27. M. R. Mian, L. R. Redfern, S. M. Pratik, D. Ray, J. Liu, K. B. Idrees, T. Islamoglu, L. Gagliardi, and O. K. Farha, “Precise Control of Cu Nanoparticle Size and Catalytic Activity through Pore Templating in Zr Metal–Organic Frameworks,“ Chem. Mater., 2020, 32 (7), 3078-3086.
    DOI: 10.1021/acs.chemmater.0c00059

  28. Z. H. Syed, Z. Chen, K. B. Idrees, T. A. Goetjen, E. C. Wegener, X. Zhang, K. W. Chapman, D. M. Kaphan, M. Delferro, and O. K. Farha, “Mechanistic Insights into C–H Borylation of Arenes with Organoiridium Catalysts Embedded in a Microporous Metal–Organic Framework,“ Organometallics, 2020, 39 (7), 1123-1133.
    DOI: 10.1021/acs.organomet.9b00874

  29. A. Chapovetsky, R. R. Langeslay, G. Celik, F. A. Perras, M. Pruski, M. S. Ferrandon, E. C. Wegener, H. Kim, F. Dogan, J. Wen, N. Khetrapal, P. Sharma, J. White, A. J. Kropf, A. P. Sattelberger, D. M. Kaphan, and M. Delferro, “Activation of Low-Valent, Multiply M–M Bonded Group VI Dimers toward Catalytic Olefin Metathesis via Surface Organometallic Chemistry,“ Organometallics, 2020, 39 (7), 1035-1045.
    DOI: 10.1021/acs.organomet.9b00787

  30. X. Chen, Y. Lyu, Z. Wang, X. Qiao, B. C. Gates, and D. Yang, “Tuning Zr12O22 Node Defects as Catalytic Sites in the Metal–Organic Framework hcp UiO-66,“ ACS Catal., 2020, 10 (5), 2906-2914.
    DOI: 10.1021/acscatal.9b04905

  31. A. Halder, S. Lee, B. Yang, M. J. Pellin, S. Vajda, Z. Li, Y. Yang, O. K. Farha, and J. T. Hupp, “Structural reversibility of Cu doped NU-1000 MOFs under hydrogenation conditions,“ J. Chem. Phys., 2020, 152, article no. 084703.
    DOI: 10.1063/1.5130600

  32. M. Barona, C. A. Gaggioli, L. Gagliardi, and R. Q. Snurr, “DFT Study on the Catalytic Activity of ALD-Grown Diiron Oxide Nanoclusters for Partial Oxidation of Methane to Methanol,“ J. Phys. Chem. A, 2020, 124 (8), 1580-1592.
    DOI: 10.1021/acs.jpca.9b11835

  33. S. Ahn, S. L. Nauert, K. E. Hicks, M. A. Ardagh, N. M. Schweitzer, O. K. Farha, and J. M. Notestein, “Demonstrating the Critical Role of Solvation in Supported Ti and Nb Epoxidation Catalysts via Vapor-Phase Kinetics,“ ACS Catal., 2020, 10 (4), 2817-2825.
    DOI: 10.1021/acscatal.9b04906

  34. M. V. Vollmer, J. Ye, J. C. Linehan, B. J. Graziano, A. Preston, E. S. Wiedner, and C. C. Lu, “Cobalt-Group 13 Complexes Catalyze CO2 Hydrogenation via a Co(−I)/Co(I) Redox Cycle,“ ACS Catal., 2020, 10 (4), 2459-2470.
    DOI: 10.1021/acscatal.9b03534

  35. L. Xia, X. Liao, Q. He, H. Wang, Y. Zhao, and D. G. Truhlar, “Multistep Reaction Pathway for CO2 Reduction on Hydride‐Capped Si Nanosheets,“ ChemCatChem, 2020, 12 (3), 722-725.
    DOI: 10.1002/cctc.201901105

  36. D. Yang, C. A. Gaggioli, E. Conley, M. Babucci, L. Gagliardi, and B. C. Gates, “Synthesis and characterization of tetrairidium clusters in the metal organic framework UiO-67: Catalyst for ethylene hydrogenation,“ J. Catal., 2020, 382, 165-172.
    DOI: 10.1016/j.jcat.2019.11.031

  37. E. Cheng, L. McCullough, H. Noh, O. K. Farha, J. T. Hupp, and J. M. Notestein, “Isobutane Dehydrogenation over Bulk and Supported Molybdenum Sulfide Catalysts,“ Ind. Eng. Chem. Res., 2020, 59 (3), 1113-1122.
    DOI: 10.1021/acs.iecr.9b05844

  38. M. Barona, S. Ahn, W. Morris, J. M. Notestein, O. K. Farha, and R. Q. Snurr, “Computational Predictions and Experimental Validation of Alkane Oxidative Dehydrogenation by Fe2M MOF Nodes,“ ACS Catal., 2020, 10 (2), 1460-1469.
    DOI: 10.1021/acscatal.9b03932

  39. I. S. Kim, S. Ahn, N. A. Vermeulen, T. E. Webber, L. C. Gallington, K. W. Chapman, R. L. Penn, J. T. Hupp, O. K. Farha, J. M. Notestein, and A. B. F. Martinson, “The Synthesis Science of Targeted Vapor-Phase Metal–Organic Framework Postmodification,“ J. Am. Chem. Soc., 2020, 142 (1), 242-250.
    DOI: 10.1021/jacs.9b10034

  40. M. Yabushita, G. Papa, P. Li, A. Fukuoka, O. K. Farha, B. A. Simmons, and A. Katz, “Effect of ionic liquid on sugar-aromatic separation selectivity by metal-organic framework NU-1000 in aqueous solution,“ Fuel Process. Technol., 2020, 197, article no. 106189.
    DOI: 10.1016/j.fuproc.2019.106189



2019


  1. J. Liu, L. R. Redfern, Y. Liao, T. Islamoglu, A. Atilgan, O. K. Farha, and J. T. Hupp, “Metal–Organic-Framework-Supported and -Isolated Ceria Clusters with Mixed Oxidation States,“ ACS Appl. Mater. Interfaces, 2019, 11 (51), 47822-47829.
    DOI: 10.1021/acsami.9b12261

  2. B. Yang, K. Sharkas, L. Gagliardi, and D. G. Truhlar, “The Effects of Active Site and Support on Hydrogen Elimination over Transition-Metal-Functionalized Yttria-Decorated Metal–Organic Frameworks,“ Catal. Sci. Technol., 2019, 9 (24), 7003-7015.
    DOI: 10.1039/C9CY01069F

  3. C. E. Elwell, M. Mandal, C. J. Bouchey, L. Que Jr., C. J. Cramer, and W. B. Tolman, “Carboxylate Structural Effects on the Properties and Proton-Coupled Electron Transfer Reactivity of [CuO2CR]2+ Cores,“ Inorg. Chem., 2019, 85 (23), 7003-7015.
    DOI: 10.1021/acs.inorgchem.9b02293

  4. A.‐R. Kim, S. Ahn, T.‐U. Yoon, J. M. Notestein, O. K. Farha, and Y.‐S. Bae, “Fast Cyclohexane Oxidation Under Mild Reaction Conditions Through a Controlled Creation of Redox‐Active Fe(II/III) Sites in a Metal−Organic Framework,“ ChemCatChem, 2019, 11, 5650-5656.
    DOI: 10.1002/cctc.201901050

  5. M. C. Simons, J. G. Vitillo, M. Babucci, A. S. Hoffman, A. Boubnov, M. L. Beauvais, Z. Chen, C. J. Cramer, K. W. Chapman, S. R. Bare, B. C. Gates, C. C. Lu, L. Gagliardi, and A. Bhan, “Structure, Dynamics, and Reactivity for Light Alkane Oxidation of Fe(II) Sites Situated in the Nodes of a Metal–Organic Framework,“ J. Am. Chem. Soc., 2019, 141 (45), 18142-18151.
    DOI: 10.1021/jacs.9b08686

  6. M. Mandal, C. E. Elwell, C. J. Bouchey, T. J. Zerk, W. B. Tolman, and C. J. Cramer, “Mechanisms for Hydrogen-Atom Abstraction by Mononuclear Copper(III) Cores: Hydrogen-Atom Transfer or Concerted Proton-Coupled Electron Transfer?,“ J. Am. Chem. Soc., 2019, 141 (43), 17236-17244.
    DOI: 10.1021/jacs.9b08109

  7. M. C. Wasson, C. T. Buru, Z. Chen, T. Islamoglu, and O. K. Farha, “Metal–organic frameworks: A tunable platform to access single-site heterogeneous catalysts,“ Appl. Catal., A, 2019, 586, article no. 117214.
    DOI: 10.1016/j.apcata.2019.117214

  8. S. P. Desai, J. Ye, T. Islamoglu, O. K. Farha, and C. C. Lu, “Mechanistic Study on the Origin of the Trans Selectivity in Alkyne Semihydrogenation by a Heterobimetallic Rhodium–Gallium Catalyst in a Metal–Organic Framework,“ Organometallics, 2019, 38 (18), 3466-3473.
    DOI: 10.1021/acs.organomet.9b00331

  9. C. A. Gaggioli, J. Sauer, and L. Gagliardi, “Hydrogen Atom or Proton Coupled Electron Transfer? C-H Bond Activation by Transition Metal Oxides,“ J. Am. Chem. Soc., 2019, 141 (37), 14603-14611.
    DOI: 10.1021/jacs.9b04006

  10. A. Nandy, J. Zhu, J. P. Janet, C. Duan, R. B. Getman, and H. J. Kulik, “Machine Learning Accelerates the Discovery of Design Rules and Exceptions in Stable Metal–Oxo Intermediate Formation,“ ACS Catal., 2019, 9 (9), 8243-8255.
    DOI: 10.1021/acscatal.9b02165

  11. C. A. Gaggioli, S. J. Stoneburner, C. J. Cramer, and L. Gagliardi, “Beyond Density Functional Theory: The Multiconfigurational Approach To Model Heterogeneous Catalysis,“ ACS Catal., 2019, 9 (9), 8481-8502.
    DOI: 10.1021/acscatal.9b01775

  12. F. Wang, Z. Chen, H. Chen, T. A. Goetjen, P. Li, X. Wang, S. Alayoglu, K. Ma, Y. Chen, T. Wang, T. Islamoglu, Y. Fang, R. Q. Snurr, and O. K. Farha, “Interplay of Lewis and Brønsted Acid Sites in Zr-Based Metal–Organic Frameworks for Efficient Esterification of Biomass-Derived Levulinic Acid,“ ACS Appl. Mater. Interfaces, 2019, 11 (35), 32090-32096.
    DOI: 10.1021/acsami.9b07769

  13. B. Yang, X.-P. Wu, L. Gagliardi, and D. G. Truhlar, “Methane functionalization by an Ir(III) catalyst supported on a metal–organic framework: an alternative explanation of steric confinement effects,“ Theor. Chem. Acc., 2019, 138, article no. 107.
    DOI: 10.1007/s00214-019-2498-y

  14. R. C. Cammarota, J. Xie, S. A. Burgess, M. V. Vollmer, K. D. Vogiatzis, J. Ye, J. C. Linehan, A. M. Appel, C. Hoffmann, X. Wang, V. G. Young, Jr., and C. C. Lu, “Thermodynamic and kinetic studies of H2 and N2 binding to bimetallic nickel-group 13 complexes and neutron structure of a Ni(η2-H2) adduct,“ Chem. Sci., 2019, 10 (29), 7029-7042.
    DOI: 10.1039/C9SC02018G

  15. X.-P. Wu, L. Gagliardi, and D. G. Truhlar, “Multilink F* Method for Combined Quantum Mechanical and Molecular Mechanical Calculations of Complex Systems,“ J. Chem. Theory Comput., 2019, 15 (7), 4208-4217.
    DOI: 10.1021/acs.jctc.9b00274

  16. J. Zheng, J. Ye, M. A. Ortuño, J. L. Fulton, O. Y. Gutiérrez, D. M. Camaioni, R. K. Motkuri, Z. Li, T. E. Webber, B. L. Mehdi, N. D. Browning, R. L. Penn, O. K. Farha, J. T. Hupp, D. G. Truhlar, C. J. Cramer, J. A. Lercher, “Selective Methane Oxidation to Methanol on Cu-Oxo Dimers Stabilized by Zirconia Nodes of an NU-1000 Metal–Organic Framework,“ J. Am. Chem. Soc., 2019, 141 (23), 9292-9304.
    DOI: 10.1021/jacs.9b02902

  17. K.-i. Otake, J. Ye, M. Mandal, T. Islamoglu, C. T. Buru, J. T. Hupp, M. Delferro, D. G. Truhlar, C. J. Cramer, and O. K. Farha, “Enhanced Activity of Heterogeneous Pd(II) Catalysts on Acid-Functionalized Metal–Organic Frameworks,“ ACS Catal., 2019, 9 (6), 5383–5390.
    DOI: 10.1021/acscatal.9b01043

  18. X. Wang, X. Zhang, P. Li, K.-i. Otake, Y. Cui, J. Lyu, M. D. Krzyaniak, Y. Zhang, Z. Li, J. Liu, C. T. Buru, T. Islamoglu, M. R. Wasielewski, Z. Li, and O. K. Farha, “Vanadium Catalyst on Isostructural Transition Metal, Lanthanide, and Actinide Based Metal–Organic Frameworks for Alcohol Oxidation,“ J. Am. Chem. Soc., 2019, 141 (20), 8306-8314.
    DOI: 10.1021/jacs.9b02603

  19. Z. Chen, S. L. Hanna, L. R. Redfern, D. Alezi, T. Islamoglu, and O. K. Farha, “Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs,“ Coord. Chem. Rev., 2019, 386, 32-49.
    DOI: 10.1016/j.ccr.2019.01.017

  20. J. G. Vitillo, A. Bhan, C. J. Cramer, C. C. Lu, and L. Gagliardi, “Quantum Chemical Characterization of Structural Single Fe(II) Sites in MIL-Type Metal Organic Frameworks for Oxidation of Methane to Methanol and Ethane to Ethanol,“ ACS Catal., 2019, 9 (4), 2870–2879.
    DOI: 10.1021/acscatal.8b04813

  21. J. Liu, Z. Li, X. Zhang, K.-i. Otake, L. Zhang, A. W. Peters, M. J. Young, N. M. Bedford, S. P. Letourneau, D. J. Mandia, J. W. Elam, O. K. Farha, and J. T. Hupp, “Introducing Nonstructural Ligands to Zirconia-like Metal–Organic Framework Nodes To Tune the Activity of Node-Supported Nickel Catalysts for Ethylene Hydrogenation,“ ACS Catal., 2019, 9 (4), 3198–3207.
    DOI: 10.1021/acscatal.8b04828

  22. G. O. Vissers, W. Zhang, O. E. Vilches, W.-G. Liu, H. S. Yu, D. G. Truhlar, and C. T. Campbell, “Heats of Adsorption of N2, CO, Ar, and CH4 versus Coverage on the Zr-Based MOF NU-1000: Measurements and DFT Calculations,“ J. Phys. Chem. C, 2019, 123 (11), 6586–6591.
    DOI: 10.1021/acs.jpcc.8b12263

  23. R. Wei, C. A. Gaggioli, G. Li, T. Islamoglu, Z. Zhang, P. Yu, O. K. Farha, C. J. Cramer, L. Gagliardi, D. Yang, and B. C. Gates, “Tuning the properties of Zr6O8 nodes in the metal organic framework UiO-66 by selection of node-bound ligands and linkers,“ Chem. Mater., 2019, 31 (5), 1655–1663.
    DOI: 10.1021/acs.chemmater.8b05037

  24. D. Yang and B. C. Gates, “Catalysis by Metal Organic Frameworks: Perspective and Suggestions for Future Research,“ ACS Catal., 2019, 9 (3), 1779–1798.
    DOI: 10.1021/acscatal.8b04515

  25. T. A. Goetjen, X. Zhang, J. Liu, J. T. Hupp, and O. K. Farha, “Metal–Organic Framework Supported Single Site Chromium(III) Catalyst for Ethylene Oligomerization at Low Pressure and Temperature,“ ACS Sustainable Chem. Eng., 2019, 7 (2), 2553–2557.
    DOI: 10.1021/acssuschemeng.8b05524



2018


  1. J. Ye, C. J. Cramer, and D. G. Truhlar, “Organic Linker Effect on the Growth and Diffusion of Cu Clusters in a Metal–Organic Framework,“ J. Phys. Chem. C, 2018, 122 (47), 26987–26997.
    DOI: 10.1021/acs.jpcc.8b09178

  2. S. P. Desai, J. Ye, J. Zheng, M. S. Ferrandon, T. E. Webber, A. E. Platero-Prats, J. Duan, P. Garcia-Holley, D. M. Camaioni, K. W. Chapman, M. Delferro, O. K. Farha, J. L. Fulton, L. Gagliardi, J. A. Lercher, R. L. Penn, A. Stein, and C. C. Lu, “Well-Defined Rhodium–Gallium Catalytic Sites in a Metal–Organic Framework: Promoter-Controlled Selectivity in Alkyne Semihydrogenation to E-Alkenes,“ J. Am. Chem. Soc., 2018, 140 (45), 15309–15318.
    DOI: 10.1021/jacs.8b08550

  3. B. Yang and D. G. Truhlar, “Computational Design of an Iron Catalyst for Olefin Metathesis,“ Organometallics, 2018, 37 (21), 3917–3927.
    DOI: 10.1021/acs.organomet.8b00583

  4. T. Islamoglu, D. Ray, P. Li, M. B. Majewski, I. Akpinar, X. Zhang, C. J. Cramer, L. Gagliardi, and O. K. Farha, “From Transition Metals to Lanthanides to Actinides: Metal-Mediated Tuning of Electronic Properties of Isostructural Metal–Organic Frameworks,“ Inorg. Chem., 2018, 57 (21), 13246–13251.
    DOI: 10.1021/acs.inorgchem.8b01748

  5. J. Liu, J. Ye, Z. Li, K.-i. Otake , Y. Liao, A. W. Peters, H. Noh, D. G. Truhlar, L. Gagliardi, C. J. Cramer, O. K. Farha, and J. T. Hupp, “Beyond the Active Site: Tuning the Activity and Selectivity of a Metal–Organic Framework-Supported Ni Catalyst for Ethylene Dimerization,“ J. Am. Chem. Soc., 2018, 140 (36), 11174–11178.
    DOI: 10.1021/jacs.8b06006

  6. H. A. Doan, Z. Li, O. K. Farha, J. T. Hupp, and R. Q. Snurr, “Theoretical insights into direct methane to methanol conversion over supported dicopper oxo nanoclusters,” Catalysis Today, 2018, 312, 2–9.
    DOI: 10.1016/j.cattod.2018.03.063

  7. S. Pellizzeri, M. Barona, P. Miro, P. Liao, L. Gagliardi, R. Q. Snurr, and R. B. Getman, “Catalytic descriptors and electronic properties of single-site catalysts for ethene dimerization to 1-butene,” Catalysis Today, 2018, 312, 149-157.
    DOI: 10.1016/j.cattod.2018.02.024

  8. A. Benali, Y. Luo, H. Shin, D. Pahls, and O. Heinonen, “Quantum Monte Carlo Calculations of Catalytic Energy Barriers in a Metallorganic Framework with Transition-Metal-Functionalized Nodes,“ J. Phys. Chem. C, 2018, 122 (29), 16683–16691.
    DOI: 10.1021/acs.jpcc.8b02368

  9. K.-i. Otake, Y. Cui, C. T. Buru, Z. Li, J. T. Hupp, and O. K. Farha, “Single-Atom-Based Vanadium Oxide Catalysts Supported on Metal–Organic Frameworks: Selective Alcohol Oxidation and Structure–Activity Relationship,“ J. Am. Chem. Soc., 2018, 140 (28), 8652–8656.
    DOI: 10.1021/jacs.8b05107

  10. A. S. Rosen, J. M. Notestein, and R. Q. Snurr, “Comprehensive Phase Diagrams of MoS2 Edge Sites Using Dispersion-Corrected DFT Free Energy Calculations,” J. Phys. Chem. C, 2018, 122 (27), 15318-15329.
    DOI: 10.1021/acs.jpcc.8b02524

  11. S. Ahn, S. L. Nauert, C. T. Buru, M. Rimoldi, H. Choi, N. M. Schweitzer, J. T. Hupp, O. K. Farha, and J. M. Notestein, “Pushing the Limits on Metal–Organic Frameworks as a Catalyst Support: NU-1000 Supported Tungsten Catalysts for o-Xylene Isomerization and Disproportionation,“ J. Am. Chem. Soc., 2018, 140 (27), 8535–8543.
    DOI: 10.1021/jacs.8b04059

  12. M. Vollmer, J. Xie, R. Cammarota, V. Young Jr., E. Bill, L. Gagliardi, and C. C. Lu, “Formal Nickelate(−I) Complexes Supported by Group 13 Ions,“Angew. Chem., Int. Ed., 2018, 57 (26), 7815-7819.
    DOI: 10.1002/anie.201803356

  13. X.-P. Wu, L. Gagliardi, and D. G. Truhlar, “Parametrization of Combined Quantum Mechanical and Molecular Mechanical Methods: Bond-Tuned Link Atoms,” Molecules, 2018, 23 (6), article no. 1309.
    DOI: 10.3390/molecules23061309

  14. J. Ye, R. C. Cammarota, J. Xie, M. V. Vollmer, D. G. Truhlar, C. J. Cramer, C. C. Lu, and L. Gagliardi, “Rationalizing the Reactivity of Bimetallic Molecular Catalysts for CO2 Hydrogenation,” ACS Catal., 2018, 8 (6), 4955–4968.
    DOI: 10.1021/acscatal.8b00803

  15. X. Zhang, Z. Huang, M. Ferrandon, D. Yang, L. Robison, P. Li, T. C. Wang, M. Delferro, and O. K. Farha, “Catalytic chemoselective functionalization of methane in a metal−organic framework,” Nature Catalysis, 2018, 1, 356–362.
    DOI: 10.1038/s41929-018-0069-6

  16. A. W. Peters, K. Otake, A. E. Platero-Prats, Z. Li, M. R. DeStefano, K. W. Chapman, O. K. Farha, and J. T. Hupp, “Site-Directed Synthesis of Cobalt Oxide Clusters in a Metal–Organic Framework,“ ACS Appl. Mater. Interfaces, 2018, 10 (17), 15073–15078.
    DOI: 10.1021/acsami.8b02825

  17. Y. Cui, M. Rimoldi, A. E. Platero-Prats, K. W. Chapman, J. T. Hupp, and O. K. Farha, “Stabilizing a Vanadium Oxide Catalyst via Supporting on Metal-Organic Framework,” Chem. Cat. Chem., 2018, 10 (8), 1772-1777.
    DOI: 10.1002/cctc.201701658

  18. M. C. Simons, M. A. Ortuño, V. Bernales, C. A. Gaggioli, C. J. Cramer, A. Bhan, and L. Gagliardi, “C–H Bond Activation on Bimetallic Two-Atom Co-M Oxide Clusters Deposited on Zr-Based MOF Nodes: Effects of Doping at the Molecular Level,” ACS Catal., 2018, 8 (4), 2864–2869.
    DOI: 10.1021/acscatal.8b00012

  19. J. Ye, L. Gagliardi, C. J. Cramer, and D. G. Truhlar, “Computational screening of MOF-supported transition metal catalysts for activity and selectivity in ethylene dimerization,” J. Catal., 2018, 360, 160–167.
    DOI: 10.1016/j.jcat.2017.12.007

  20. D. Yang, M. A. Ortuno, V. Bernales, C. J. Cramer, L. Gagliardi, and B. C. Gates, “Structure and Dynamics of Zr6O8 Metal–Organic Framework Node Surfaces Probed with Ethanol Dehydration as a Catalytic Test Reaction,” J. Am. Chem. Soc., 2018, 140 (10), 3751–3759.
    DOI: 10.1021/jacs.7b13330

  21. C. D. Malonzo, Z. Wang, J. Duan, W. Zhao, T. E. Webber, Z. Li, I. S. Kim, A. Kumar, A. Bhan, A. E. Platero-Prats, K. W. Chapman, O. K. Farha, J. T. Hupp, A. B. F. Martinson, R. L. Penn, and A. Stein, “Application and Limitations of Nanocasting in Metal–Organic Frameworks,” Inorganic Chemistry, 2018, 57 (5), 2782–2790.
    DOI: 10.1021/acs.inorgchem.7b03181

  22. W. Zhao, Z. Wang, C. D. Malonzo, T. E. Webber, A. E. Platero-Prats, F. Sotomayor, N. A. Vermeulen, T. C. Wang, J. T. Hupp, O.K. Farha, R. L. Penn, K. W. Chapman, M. Thommes, and A. Stein, “Extending the Compositional Range of Nanocasting in the Oxozirconium Cluster-Based Metal–Organic Framework NU-1000—A Comparative Structural Analysis,” Chem. Mater., 2018, 30 (4), 1301–1315.
    DOI: 10.1021/acs.chemmater.7b04893

  23. B. Yang, L. Gagliardi, and D. G. Truhlar, “Transition states of spin-forbidden reactions,” Phys. Chem. Chem. Phys., 2018, 20 (6), 4129–4136.
    DOI: 10.1039/C7CP07227A

  24. V. Bernales, M. A. Ortuno, D. G. Truhlar, C. J. Cramer, and L. Gagliardi, “Computational Design of Functionalized Metal–Organic Framework Nodes for Catalysis,” ACS Central Science, 2018, 4 (1), 5–19.
    DOI: 10.1021/acscentsci.7b00500

  25. I.S. Kim, Z. Li, J. Zheng, A. E. Platero-Prats, A. Mavrandonakis, S. Pellizzeri, M. Ferrandon, A. Vjunov, L. C. Gallington, T. E. Webber, N. A. Vermeulen, R. L. Penn, R. B. Getman, C. J. Cramer, K. W. Chapman, D. M. Camaioni, J. L. Fulton, J. A. Lercher, O. K. Farha, J. T. Hupp, and A. B. F. Martinson, “Sinter-Resistant Platinum Catalyst Supported by Metal–Organic Framework,” Angew. Chem., Int. Ed., 2018, 57 (4), 909–919.
    DOI: 10.1002/anie.201708092

  26. X.-P. Wu, L. Gagliardi, and D. G. Truhlar, “Combined Quantum Mechanical and Molecular Mechanical Method for Metal-Organic Frameworks: Proton Topologies of NU-1000,” Phys. Chem. Chem. Phys., 2018, 20 (3), 1778-1786.
    DOI: 10.1039/C7CP06751H

  27. W. Zhang, Y. Ma, I. A. Santos-Lopez, J. M. Lownsbury, H. Yu, W.-G. Liu, D. G. Truhlar, C. T. Campbell, and O. E. Vilches, “Energetics of van der Waals Adsorption on the Metal–Organic Framework NU-1000 with Zr6-oxo, Hydroxo, and Aqua Nodes,” J. Am. Chem. Soc., 2018, 140 (1), 328–338.
    DOI: 10.1021/jacs.7b10360



2017


  1. Y. Wang, X. Wang, D. G. Truhlar, and X. He, “How Well Can the M06 Suite of Functionals Describe the Electron Densities of Ne, Ne6+, and Ne8+?” J. Chem. Theory Comput., 2017, 13 (12), 6068–6077.
    DOI: 10.1021/acs.jctc.7b00865

  2. T. E. Webber, W.-G. Liu, S. Puneet Desai, C. C. Lu, D. G. Truhlar, and R. L. Penn, “Role of a Modulator in the Synthesis of Phase-Pure NU-1000,” ACS Appl. Mater. Interfaces, 2017, 9 (45), 39342–39346.
    DOI: 10.1021/acsami.7b11348

  3. Z. Li, A. W. Peters, A. E. Platero-Prats, J. Liu, C.-W. Kung, H. Noh, M. R. DeStefano, N. M. Schweitzer, K. W. Chapman, J. T. Hupp, and O. K. Farha, “Fine-Tuning the Activity of Metal–Organic Framework-Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane,” J. Am. Chem. Soc., 2017, 139 (42), 15251–15258.
    DOI: 10.1021/jacs.7b09365

  4. K. D. Vogiatzis, G. Li, E. J. M. Hensen, L. Gagliardi, and E. A. Pidko, “The Electronic Structure of the [Cu3(μ-O)3]2+ Cluster in Mordenite Zeolite and Its Effects on the Methane to Methanol Oxidation,” J. Phys. Chem. C, 2017, 121 (40), 22295–22302.
    DOI: 10.1021/acs.jpcc.7b08714

  5. M. Rimoldi, J. T. Hupp, and O. K. Farha, “Atomic Layer Deposition of Rhenium–Aluminum Oxide Thin Films and ReOx Incorporation in a Metal–Organic Framework,” ACS Appl. Mater. Interfaces, 2017, 9 (40), 35067–35074.
    DOI: 10.1021/acsami.7b12303

  6. R. C. Cammarota, M. V. Vollmer, J. Xie, J. Ye, J. C. Linehan, S. A. Burgess, A. M. Appel, L. Gagliardi, and C. C. Lu, “A Bimetallic Nickel–Gallium Complex Catalyzes CO2 Hydrogenation via the Intermediacy of an Anionic d10 Nickel Hydride,” J. Am. Chem. Soc., 2017, 139 (40), 14244–14250.
    DOI: 10.1021/jacs.7b07911

  7. W.-G. Liu and D. G. Truhlar, “Computational Linker Design for Highly Crystalline Metal–Organic Framework NU-1000,” Chem. Mater., 2017, 29 (19), 8073–8081.
    DOI: 10.1021/acs.chemmater.7b01624

  8. V. Bernales, D. Yang, J. Yu, G. Gümüşlü, C. J. Cramer, B.C. Gates, and L. Gagliardi, “Molecular Rhodium Complexes Supported on the Metal-Oxide-Like Nodes of Metal Organic Frameworks and on Zeolite HY: Catalysts for Ethylene Hydrogenation and Dimerization,” ACS Appl. Mater. Interfaces, 2017, 9 (39), 33511–33520.
    DOI: 10.1021/acsami.7b03858

  9. P. Liao, R. B. Getman, and R. Q. Snurr, “Optimizing Open Iron Sites in Metal–Organic Frameworks for Ethane Oxidation: A First-Principles Study,” ACS Appl. Mater. Interfaces, 2017, 9 (39), 33484–33492.
    DOI: 10.1021/acsami.7b02195

  10. J. Ye, L. Gagliardi, C. J. Cramer, and D. G. Truhlar, “Single Ni atoms and Ni4 clusters have similar catalytic activity for ethylene dimerization,” J. Catal., 2017, 354, 278–286.
    DOI: 10.1016/j.jcat.2017.08.011

  11. A. E. Platero-Prats, Z. Li, L. C. Gallington, A. W. Peters, J. T. Hupp, O. K. Farha, and K. W. Chapman, “Addressing the characterisation challenge to understand catalysis in MOFs: the case of nanoscale Cu supported in NU-1000,” Faraday Discuss., 2017, 201, 337-350.
    DOI: 10.1039/C7FD00110J

  12. S. P. Desai, C. D. Malonzo, T. Webber, J. Duan, A. B. Thompson, S.J. Tereniak, M.R. DeStefano, C.T. Buru, Z. Li, R.L. Penn, O.K. Farha, J. T. Hupp, A. Stein, and C. C. Lu, “Assembly of dicobalt and cobalt–aluminum oxide clusters on metal–organic framework and nanocast silica supports,” Faraday Discuss., 2017, 201, 287–302.
    DOI: 10.1039/C7FD00055C

  13. D. Yang, M. R. Momeni, H. Demir, D. R. Pahls, M. Rimoldi, T. C. Wang, O. K. Farha, J. T. Hupp, C. J. Cramer, B. C. Gates, and L. Gagliardi, “Tuning the properties of metal–organic framework nodes as supports of single-site iridium catalysts: node modification by atomic layer deposition of aluminium ,” Faraday Discuss., 2017, 201, 195–206.
    DOI: 10.1039/C7FD00031F

  14. Y. Wang, X. Jin, H. S. Yu, D. G. Truhlar, X. He, “Revised M06-L functional for improved accuracy on chemical reaction barrier heights, noncovalent interactions, and solid-state physics,” PNAS, 2017, 114 (32), 8487–8492.
    DOI: 10.1073/pnas.1705670114

  15. D. R. Pahls, M. A. Ortuño, P. H. Winegar, C. J. Cramer, and L. Gagliardi, “Computational Screening of Bimetal-Functionalized Zr6O8 MOF Nodes for Methane C–H Bond Activation,” Inorg. Chem., 2017, 56 (15), 8739–8743.
    DOI: 10.1021/acs.inorgchem.7b01334

  16. A. E. Platero-Prats, A. B. League, V. Bernales, J. Ye, L. C. Gallington, A. Vjunov, N. M. Schweitzer, Z. Li, J. Zheng, B.L. Mehdi, A.J. Stevens, A. Dohnalkova, M. Balasubramanian, O.K. Farha, J. T. Hupp, N. D. Browning, J. L. Fulton, D. M. Camaioni, J. A. Lercher, D. G. Truhlar, L. Gagliardi, C. J. Cramer, and K. W. Chapman, “Bridging Zirconia Nodes within a Metal–Organic Framework via Catalytic Ni-Hydroxo Clusters to Form Heterobimetallic Nanowires,” J. Am. Chem. Soc., 2017, 139 (30), 10410-10418.
    DOI: 10.1021/jacs.7b04997

  17. T. Ikuno, J. Zheng, A. Vjunov, M. Sanchez-Sanchez, M. A. Ortuño, D. R. Pahls, J. L. Fulton, D. M. Camaioni, Z. Li, D. Ray, B.L. Mehdi, N. D. Browning, O. K. Farha, J. T. Hupp, C. J. Cramer, L. Gagliardi, and J. A. Lercher, “Methane Oxidation to Methanol Catalyzed by Cu-Oxo Clusters Stabilized in NU-1000 Metal–Organic Framework,” J. Am. Chem. Soc., 2017, 139 (30), 10294–10301.
    DOI: 10.1021/jacs.7b02936

  18. D. Ongari, D. Tiana, S. J. Stoneburner, L. Gagliardi, and B. Smit, “Origin of the Strong Interaction between Polar Molecules and Copper(II) Paddle-Wheels in Metal Organic Frameworks,” J. Phys. Chem. C, 2017, 121 (28), 15135–15144.
    DOI: 10.1021/acs.jpcc.7b02302

  19. D. Yang and B. C. Gates, “Heterogeneous catalysis: Uniformity begets selectivity,” Nat. Mater., 2017, 16, 703–704.
    DOI: 10.1038/nmat4924

  20. M. Yabushita, P. Li, T. Islamoglu, H. Kobayashi, A. Fukuoka, O.K. Farha, and A. Katz, “Selective Metal–Organic Framework Catalysis of Glucose to 5-Hydroxymethylfurfural Using Phosphate-Modified NU-1000,” Ind. Eng. Chem. Res., 2017, 56 (25), 7141–7148.
    DOI: 10.1021/acs.iecr.7b01164

  21. M. Rimoldi, L. C. Gallington, K. W. Chapman, K. MacRenaris, J. T. Hupp, and O. K. Farha, “Catalytically Active Silicon Oxide Nanoclusters Stabilized in a Metal-Organic Framework,” Chem. - Eur. J., 2017, 23 (35), 8532–8536.
    DOI: 10.1002/chem.201701902

  22. J. R. Avila, A. W. Peters, Z. Li, M. A. Ortuno, A. B. F. Martinson, C. J. Cramer, J. T. Hupp, and O. K. Farha, “Atomic layer deposition of Cu(I) oxide films using Cu(II) bis(dimethylamino-2-propoxide) and water,” Dalton Trans., 2017, 46 (18), 5790–5795.
    DOI: 10.1039/C6DT02572B

  23. J. T. Moore, N. E. Smith, and C. C. Lu, “Structure and dynamic NMR behavior of rhodium complexes supported by Lewis acidic group 13 metallatranes,” Dalton Trans., 2017, 46 (17), 5689–5701.
    DOI: 10.1039/c6dt04769f

  24. M. Yabushita, P. Li, K.A. Durkin, H. Kobayashi, A. Fukuoka, O.K. Farha, and A. Katz, “Insights into Supramolecular Sites Responsible for Complete Separation of Biomass-Derived Phenolics and Glucose in Metal–Organic Framework NU-1000,” Langmuir, 2017, 33 (17), 4129–4137.
    DOI: 10.1021/acs.langmuir.7b00045

  25. Z. Li, A. W. Peters, J. Liu, X. Zhang, N. M. Schweitzer, J. T. Hupp and O. K. Farha, “Size effect of the active sites in UiO-66-supported nickel catalysts synthesized via atomic layer deposition for ethylene hydrogenation,” Inorg. Chem. Front., 2017, 4 (5), 820–824.
    DOI: 10.1039/C7QI00056A

  26. T. Islamoglu, S. Goswami, Z. Li, A. J. Howarth, O. K. Farha, and J. T. Hupp, “Postsynthetic Tuning of Metal–Organic Frameworks for Targeted Applications,” Acc. Chem. Res., 2017, 50 (4), 805–813.
    DOI: 10.1021/acs.accounts.6b00577

  27. R. C. Cammarota, L. J. Clouston, and C. C. Lu, “Leveraging molecular metal–support interactions for H2 and N2 activation,” Coord. Chem. Rev., 2017, 334, 100–111.
    DOI: 10.1016/j.ccr.2016.06.014

  28. J. L. Bao, X. Zhang, X. Xu, and D. G. Truhlar, “Predicting bond dissociation energy and bond length for bimetallic diatomic molecules: a challenge for electronic structure theory,” Phys. Chem. Chem. Phys., 2017, 19 (8), 5839–5854.
    DOI: 10.1039/C6CP08896A

  29. K. Duanmu and. D. G. Truhlar, “Validation of Density Functionals for Adsorption Energies on Transition Metal Surfaces,” J. Chem. Theory Comput., 2017, 13 (2), 835–842.
    DOI: 10.1021/acs.jctc.6b01156

  30. J. L. Bao, S. O. Odoh, L. Gagliardi, and D. G. Truhlar, “Predicting Bond Dissociation Energies of Transition-Metal Compounds by Multiconfiguration Pair-Density Functional Theory and Second-Order Perturbation Theory Based on Correlated Participating Orbitals and Separated Pairs,” J. Chem. Theory Comput., 2017, 13 (2), 616–626.
    DOI: 10.1021/acs.jctc.6b01102

  31. M. Rimoldi, V. Bernales, J. Borycz, A. Vjunov, L. C. Gallington, A.E. Platero-Prats, I.S. Kim, J. L. Fulton, A. B. F. Martinson, J. A. Lercher, K. W. Chapman, C. J. Cramer, L. Gagliardi, J. T. Hupp, and O. K. Farha, “Atomic Layer Deposition in a Metal-Organic Framework: Synthesis, Characterization, and Performance of a Solid Acid,” Chem. Mater., 2017, 29 (3), 1058–1068.
    DOI: 10.1021/acs.chemmater.6b03880

  32. M. Rimoldi, A. J. Howarth, M.R. DeStefano, L. Lin, S. Goswami, P. Li, J. T. Hupp, and O. K. Farha, “Catalytic Zirconium/Hafnium-Based Metal–Organic Frameworks,” ACS Catal., 2017, 7 (2), 997–1014.
    DOI: 10.1021/acscatal.6b02923

  33. Z. Li, A. W. Peters, V. Bernales, M. A. Ortuño, N. M. Schweitzer, M. R. DeStefano, L. C. Gallington, A.E. Platero-Prats, K. W. Chapman, C. J. Cramer, L. Gagliardi, J. T. Hupp, and O. K. Farha, “Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature,” ACS Cent. Sci., 2017, 3 (1), 31–38.
    DOI: 10.1021/acscentsci.6b00290

  34. A. J. Howarth, A. W. Peters, N. A. Vermeulen, T. C. Wang, J. T. Hupp, and O. K. Farha, “Best Practices for the Synthesis, Activation, and Characterization of Metal–Organic Frameworks,” 2017, Chem. Mater., 29 (1), 26–39.
    DOI: 10.1021/acs.chemmater.6b02626



2016


  1. S. Pellizzeri, I. A. Jones, H. A. Doan, R. Q. Snurr, and R. B. Getman, “Using Gas-Phase Clusters to Screen Porphyrin-Supported Nanocluster Catalysts for Ethane Oxidation to Ethanol,” Catal. Lett., 2016, 146 (12), 2566–2573.
    DOI: 10.1007/s10562-016-1890-7

  2. D. Yang, V. Bernales, T. Islamoglu, O.K. Farha, J. T. Hupp, C. J. Cramer, L. Gagliardi, and B. C. Gates, “Tuning the Surface Chemistry of Metal Organic Framework Nodes: Proton Topology of the Metal-Oxide-Like Zr6 Nodes of UiO-66 and NU-1000,” 2016, J. Am. Chem. Soc., 138 (46), 15189–15196.
    DOI: 10.1021/jacs.6b08273

  3. S. Ahn, N.E. Thornburg, Z. Li, T. C. Wang, L. C. Gallington, K. W. Chapman, J. M. Notestein, J. T. Hupp, and O. K. Farha, “Stable Metal–Organic Framework-Supported Niobium Catalysts,” Inorg. Chem., 2016, 55 (22), 11954–11961.
    DOI: 10.1021/acs.inorgchem.6b02103

  4. K. Duanmu, J. Friedrich, and D. G. Truhlar, “Thermodynamics of Metal Nanoparticles: Energies and Enthalpies of Formation of Magnesium Clusters and Nanoparticles as Large as 1.3 nm,” J. Phys. Chem. C, 2016, 120 (45), 26110–26118.
    DOI: 10.1021/acs.jpcc.6b08371

  5. S. T. Akin, V. Zamudio-Bayer, K. Duanmu∥, G. Leistner, K. Hirsch, C. Bülow, A. Ławicki, A. Terasaki, B. von Issendorff, D. G. Truhlar, J. T. Lau, and M. A. Duncan, “Size-Dependent Ligand Quenching of Ferromagnetism in Co3(benzene)n+ Clusters Studied with X-ray Magnetic Circular Dichroism Spectroscopy,” J. Phys. Chem.Lett., 2016, 7 (22), 4568–4575.
    DOI: 10.1021/acs.jpclett.6b01839

  6. H. Noh, Y. Cui, A. W. Peters, D. R. Pahls, M. A. Ortuño, N. A. Vermeulen, C. J. Cramer, L. Gagliardi, J. T. Hupp, and O. K. Farha, “An Exceptionally Stable Metal–Organic Framework Supported Molybdenum(VI) Oxide Catalyst for Cyclohexene Epoxidation,” J. Am. Chem. Soc., 2016, 138 (44), 14720–14726.
    DOI: 10.1021/jacs.6b08898

  7. M. A. Ortuño, V. Bernales, L. Gagliardi, and C. J. Cramer, “Computational Study of First-Row Transition Metals Supported on MOF NU-1000 for Catalytic Acceptorless Alcohol Dehydrogenation,” J. Phys. Chem. C, 2016, 120 (43), 24687–24705.
    DOI: 10.1021/acs.jpcc.6b06381

  8. V. Bernales, A. B. League, Z. Li, N. M. Schweitzer, A. W. Peters, R. K. Carlson, J. T. Hupp, C. J. Cramer, O. K. Farha, and L. Gagliardi, “Computationally-Guided Discovery of Catalytic Cobalt-Decorated Metal–Organic Framework for Ethylene Dimerization,” J. Phys. Chem. C, 2016, 120 (41), 23576–23583.
    DOI: 10.1021/acs.jpcc.6b07362

  9. L. C. Gallington, I. S. Kim, W.-G. Liu, A. A. Yakovenko, A. E. Platero-Prats, Z. Li, T. C. Wang, J. T. Hupp, O. K. Farha, D. G. Truhlar, A. B. F. Martinson, and K. W. Chapman, “Regioselective Atomic Layer Deposition in Metal–Organic Frameworks Directed by Dispersion Interactions,” J. Am. Chem. Soc., 2016, 138 (41), 13513–13516.
    DOI: 10.1021/jacs.6b08711

  10. M. Yabushita, P. Li, H. Kobayashi, A. Fukuoka, O.K. Farha, and A, Katz, “Complete furanics–sugar separations with metal–organic framework NU-1000,” Chem. Commun., 2016, 52 (79), 11791–11794.
    DOI: 10.1039/C6CC05864G

  11. H. S. Yu, S. L. Li, and D. G. Truhlar, “Perspective: Kohn-Sham density functional theory descending a staircase,” J. Chem. Phys., 2016, 145 (13), 130901.
    DOI: 10.1063/1.4963168

  12. I.S. Kim, O.K. Farha, J. T. Hupp, L. Gagliardi, K. W. Chapman, C. Cramer, and A. B. F. Martinson, “A Precise and Scalable Post-Modification of Mesoporous Metal-Organic Framework NU-1000 Via Atomic Layer Deposition,” ECS Transactions, 2016, 75 (6), 93–99.
    DOI: 10.1149/07506.0093ecst

  13. A. B. Thompson, D. R. Pahls, V. Bernales, L. C. Gallington, C. D. Malonzo, T. Webber, S.J. Tereniak, T. C. Wang, S. P. Desai, Z. Li, I. S. Kim, L. Gagliardi, R. L. Penn, K. W. Chapman, A. Stein, O. K. Farha, J. T. Hupp, A. B. F. Martinson∥, and C C. Lu, “Installing Heterobimetallic Cobalt–Aluminum Single Sites on a Metal Organic Framework Support,” Chem. Mater., 2016, 28 (18), 6753–6762.
    DOI: 10.1021/acs.chemmater.6b03244

  14. T.-F. Liu, N. A. Vermeulen, A.J. Howarth, P. Li, A.A. Sarjeant, J. T. Hupp, and O. K. Farha, “Adding to the Arsenal of Zirconium-Based Metal–Organic Frameworks: the Topology as a Platform for Solvent-Assisted Metal Incorporation,” Eur. J. Inorg. Chem., 2016, 2016 (27), 4349–4352.
    DOI: 10.1002/ejic.201600627

  15. A. W. Peters, Z. Li, O. K. Farha, and J. T. Hupp, “Toward Inexpensive Photocatalytic Hydrogen Evolution: A Nickel Sulfide Catalyst Supported on a High-Stability Metal–Organic Framework,” ACS Appl. Mater. Interfaces, 2016, 8 (32), 20675–20681.
    DOI: 10.1021/acsami.6b04729

  16. J. M. Lownsbury, I. A. Santos-López, W. Zhang, C. T. Campbell, H. S. Yu, W.-G. Liu, C. J. Cramer, D. G. Truhlar, T. Wang, J. T. Hupp, and O. K. Farha, “Calcium Vapor Adsorption on the Metal–Organic Framework NU-1000: Structure and Energetics,” J. Phys. Chem. C, 2016, 120 (30), 16850–16862.
    DOI: 10.1021/acs.jpcc.6b05707

  17. H. S. Yu, X. He, S. L. Li, and D. G. Truhlar, “MN15: A Kohn-Sham Global-Hybrid Exchange-Correlation Density Functional with Broad Accuracy for Multi-Reference and Single-Reference Systems and Noncovalent Interactions,” Chem. Sci., 2016, 7 (8), 5032–5051.
    DOI: 10.1039/C6SC00705H

  18. M. Rimoldi, A. Nakamura, N.A. Vermeulen, J.J. Henkelis, A. K. Blackburn, J. T. Hupp, J. F. Stoddart, and O. K. Farha, “A Metal-Organic Framework Immobilised Iridium Pincer Complex,” Chem. Sci., 2016, 7 (8), 4980–4984.
    DOI: 10.1039/C6SC01376G

  19. H. S. Yu and D. G. Truhlar, “Oxidation State 10 Exists,” Angew. Chem., Int. Ed., 2016, 55 (31), 9004–9006.
    DOI: 10.1002/anie.201604670

  20. S. T. Dix, J. K. Scott, R. B. Getman, and C. T. Campbell, “Using degrees of rate control to improve selective n-butane oxidation over model MOF-encapsulated catalysts: sterically-constrained Ag3Pd(111),” Faraday Discuss., 2016, 188, 21-38.
    DOI: 10.1039/C5FD00198F

  21. K. Duanmu, O. Roberto-Neto, F. B. C. Machado, J. A. Hansen, J. Shen, P. Piecuch, and D. G. Truhlar, “Geometries, Binding Energies, Ionization Potentials, and Electron Affinities of Metal Clusters: Mgn0, ± 1, n = 1–7,” J. Phys. Chem. C, 2016, 120 (24), 13275–13286.
    DOI: 10.1021/acs.jpcc.6b03080

  22. M. Yabushita, P. Li, V. Bernales, H. Kobayashi, A. Fukuoka, L. Gagliardi, O.K. Farha, and A. Katz, “Unprecedented selectivity in molecular recognition of carbohydrates by a metal-organic framework,” Chem. Commun., 2016, 52 (44), 7094–7097.
    DOI: 10.1039/C6CC03266D

  23. A. E. Platero-Prats, A. Mavrandonakis, L. C. Gallington, Y. Liu, J. T. Hupp, O. K. Farha, C. J. Cramer, and K. W. Chapman, “Structural Transitions of the Metal-Oxide Nodes within Metal−Organic Frameworks: On the Local Structures of NU-1000 and UiO-66,” J. Am. Chem. Soc., 2016, 138 (12), 4178–4185.
    DOI: 10.1021/jacs.6b00069

  24. H. S. Yu, X. He, and D. G. Truhlar, “MN15-L: A New Local Exchange-Correlation Functional for Kohn–Sham Density Functional Theory with Broad Accuracy for Atoms, Molecules, and Solids,” J. Chem. Theory Comput., 2016, 12 (3), 1280–1293.
    DOI: 10.1021/acs.jctc.5b01082

  25. C. D. Malonzo, S. M. Shaker, L. Ren, S. D. Prinslow, A. E. Platero-Prats, L. C. Gallington, J. Borycz, A. B. Thompson, T. C. Wang, O. K. Farha, J. T. Hupp, C. C. Lu, K. W. Chapman, J. C. Myers, R. L. Penn, L. Gagliardi, M. Tsapatsis, and A. Stein, “Thermal Stabilization of Metal–Organic Framework-Derived Single-Site Catalytic Clusters Through Nanocasting,” J. Am. Chem. Soc., 2016, 138 (8), 2739–2748.
    DOI: 10.1021/jacs.5b12688

  26. R. C. Klet, T. C. Wang, L. E. Fernandez, D. G. Truhlar, J. T. Hupp, O. K. Farha, “Synthetic Access to Atomically Dispersed Metals in Metal-Organic Frameworks via a Combined Atomic-Layer-Deposition-in-MOF and Metal Exchange Approach,” Chem. Mater., 2016, 28 (4), 1213–1219.
    DOI: 10.1021/acs.chemmater.5b04887

  27. Z. Li, N. M. Schweitzer, A. B. League, V. Bernales, A. W. Peters, A. B. Getsoian, T. C. Wang, J. T. Miller, A. Vjunov, J. L. Fulton, J. A. Lercher, C. J. Cramer, L. Gagliardi, J. T. Hupp, and O. K. Farha, “Sintering-Resistant Single-Site Nickel Catalyst Supported by Metal-Organic Framework,” J. Am. Chem. Soc., 2016, 138 (6), 1977–1982.
    DOI: 10.1021/jacs.5b12515

  28. F. Aquilante, J. Autschbach, R. K. Carlson, L. F. Chibotaru, M. G. Delcey, L. De Vico, I. F. Galván, N. Ferré, L. M. Frutos, L. Gagliardi, M. Garavelli, A. Giussani, C. E. Hoyer, G. L. Manni, H. Lischka, D. Ma, P. Å. Malmqvist, T. Müller, A. Nenov, M. Olivucci, T. B. Pedersen, D. Peng, F. Plasser, B. Pritchard, M. Reiher, I. Rivalta, I. Schapiro, J. Segarra-Martí, M. Stenrup, D. G. Truhlar, L. Ungur, A. Valentini, S. Vancoillie, V. Veryazov, V. P. Vysotskiy, O. Weingart, F. Zapata, R. Lindh, “Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table,” J. Comp. Chem., 2016, 37 (5), 506-541.
    DOI: 10.1002/jcc.24221

  29. A. J. Howarth, Y. Liu, P. Li, Z. Li, T. C. Wang, J. T. Hupp, O. K. Farha, “Chemical, thermal and mechanical stabilities of metal–organic frameworks,” Nat. Rev. Mats., 2016, 1, 15018.
    DOI: 10.1038/natrevmats.2015.18

  30. D. Yang, S. O. Odoh, J. Borycz, T. C. Wang, O. K. Farha, J. T. Hupp, C. J. Cramer, L. Gagliardi, and B. C. Gates, “Tuning Zr6 MOF Nodes as Catalyst Supports: Site Densities and Electron-Donor Properties Influence Molecular Iridium Complexes as Ethylene Conversion Catalysts,” ACS Catal., 2016, 6 (1), 235–247.
    DOI: 10.1021/acscatal.5b02243

  31. T. C. Wang, N. A. Vermeulen, I. S. Kim, A. B. F. Martinson, J. F. Stoddart, J. T. Hupp, and O. K. Farha, “Scalable synthesis and post-modification of a mesoporous metal-organic framework called NU-1000,” Nat. Protoc., 2016, 11, 149–162.
    DOI: 10.1038/nprot.2016.001


2015


  1. R. Klet, S. Tussupbayev, J. Borycz, J. R. Gallagher, M. M. Stalzer, J. T. Miller, L. Gagliardi, J. T. Hupp, T. J. Marks, C. J. Cramer, M. Delferro, and O. K. Farha, “Single-Site Organozirconium Catalyst Embeded in a Metal-Organic Framework,” J. Am. Chem. Soc., 2015, 137 (50), 15680–15683.
    DOI: 10.1021/jacs.5b11350

  2. L. J. Clouston, V. Bernales, R. C. Cammarota, R. K. Carlson, E. Bill, L. Gagliardi, and C. C. Lu, “Heterobimetallic Complexes that Bond Vanadium to Iron, Cobalt, and Nickel,” Inorg. Chem., 2015, 54 (24), 11559–11679.
    DOI: 10.1021/acs.inorgchem.5b01631

  3. R. J. Eisenhart, R. K. Carlson, L. J. Clouston, V. G. Young Jr., Y. Chen, E. Bill, L. Gagliardi, and C. C. Lu, “Influence of Copper Oxidation State on the Bonding Electronic Structure of Cobalt-Copper Complexes,” Inorg. Chem., 2015, 54 (23), 11330–11338.
    DOI: 10.1021/acs.inorgchem.5b01950

  4. S. T. Madrahimov, J. R. Gallagher, G. Zhang, Z. Meinhart, S. J. Garibay, M. Delferro, J. T. Miller, O. K. Farha, J. T. Hupp, and S. T. Nguyen, “Gas-Phase Dimerization of Ethylene under Mild Conditions Catalyzed by MOF Materials Containing (bpy)NiII Complexes,” ACS Catal., 2015, 5 (11), 6713–6718.
    DOI: 10.1021/acscatal.5b01604

  5. R. C. Cammarota and C. C. Lu, “Tuning Nickel with Lewis Acidic Group 13 Metalloligands for Catalytic Olefin Hydrogenation,” J. Am. Chem. Soc., 2015, 137 (39), 12486–12489.
    DOI: 10.1021/jacs.5b08313

  6. L. J. Clouston, V. Bernales, R. K. Carlson, L. Gagliardi, and C. C. Lu, “Bimetallic Cobalt–Dinitrogen Complexes: Impact of the Supporting Metal on N2 Activation,” Inorg. Chem., 2015, 54 (19), 9263–9270.
    DOI: 10.1021/acs.inorgchem.5b00983

  7. C. A. Wolcott, A. J. Medford, F. Studt, and C. T. Campbell, “Degree of Rate Control Approach to Computational Catalyst Screening,” J. Catal., 2015, 330, 197–207.
    DOI: 10.1016/j.jcat.2015.07.015,

  8. R. K. Carlson, S. O. Odoh, S. J. Tereniak, C. C. Lu, and L. Gagliardi, “Can Multiconfigurational Self-Consistent Field Theory and Density Functional Theory Correctly Predict the Ground State of Metal–Metal-Bonded Complexes?” J. Chem. Theory Comput., 2015, 11 (9), 4093–4101.
    DOI: 10.1021/acs.jctc.5b00412

  9. R. K. Carlson, D. G. Truhlar, and L. Gagliardi, “Multiconfiguration Pair-Density Functional Theory: A Fully Translated Gradient Approximation and Its Performance for Transition Metal Dimers and the Spectroscopy of Re2Cl82–,” J. Chem. Theory Comput., 2015, 11 (9), 4077–4085.
    DOI: 10.1021/acs.jctc.5b00609

  10. A. W. Peters, Z. Li, O. K. Farha, and J. T. Hupp, “Atomically Precise Growth of Catalytically Active Cobalt Sulfide on Flat Surfaces and within a Metal-Organic Framework via Atomic Layer Deposition,” ACS Nano., 2015, 9 (8), 8484–8490.
    DOI: 10.1021/acsnano.5b03429

  11. R. J. Eisenhart, P. A. Rudd, N. Planas, D. W. Boyce, R. K. Carlson, W. B. Tolman, E. Bill, L. Gagliardi, and C. C. Lu, “Pushing the Limits of Delta Bonding in Metal–Chromium Complexes with Redox Changes and Metal Swapping,” Inorg. Chem., 2015, 54 (15), 7579–7592.
    DOI: 10.1021/acs.inorgchem.5b01163

  12. H. Yu and D.G Truhlar, “Components of the Bond Energy in Polar Diatomic Molecules, Radicals, and Ions Formed by Group-1 and Group-2 Metal Atoms,” J. Chem. Theory Comput., 2015, 11 (7), 2968–2983.
    DOI: 10.1021/acs.jctc.5b00083

  13. I. S. Kim, J. Borycz, A. Platero-Plats, S. Tussupbayev, T. Wang, O. Farha, J. Hupp, L. Gagliardi, K. Chapman, C. J. Cramer, and A. Martinson, “Targeted Single-site MOF Node Modification: Trivalent Metal Loading via Atomic Layer Deposition,” Chem. Mater,. 2015, 27 (13), 4772–4778.
    DOI: 10.1021/acs.chemmater.5b01560

  14. D. Yang, S. O. Odoh, T. C. Wang, O. K. Farha, J. T. Hupp, C. J. Cramer, L. Gagliardi, and B. C. Gates, “Metal-organic framework nodes as nearly ideal supports for molecular catalysts: NU-1000- and UiO-66-supported iridium complexes,” J. Am. Chem. Soc., 2015, 137 (23), 7391–7396.
    DOI: 10.1021/jacs.5b02956

  15. K. Duanmu and D. G. Truhlar, “Validation of Methods for Computational Catalyst Design: Geometries, Structures, and Energies of Neutral and Charged Silver Clusters,” J. Phys. Chem. C, 2015, 119 (17), 9617–9626.
    DOI: 10.1021/acs.jpcc.5b01545

  16. H. S. Yu, W. Zhang, P. Verma, X. He, and D. G. Truhlar, “Nonseparable Exchange-Correlation Functional for Molecules, Including Homogeneous Catalysis Involving Transition Metals,” Phys. Chem. Chem. Phys., 2015, 17 (18), 12146–12160.
    DOI: 10.1039/C5CP01425E

  17. R. B. Siedschlag, V. Bernales, K. D. Vogiatzis, N. Planas, L. J. Clouston, E. Bill, L. Gagliardi, and C. C. Lu, “Catalytic Silylation of Dinitrogen with a Dicobalt Complex,” J. Am. Chem. Soc., 2015,137 (14), 4638-4641.
    DOI: 10.1021.jacs.5b01445

  18. J. S. Bao, H. S. Yu, K. Duanmu, M. Makeev, X. Xu, and D. G. Truhlar, “Density Functional Theory of the Water Splitting Reaction on Fe(0): Comparison of Local and Nonlocal Correlation Functionals,” ACS Catal., 2015, 5 (4), 2070–2080.
    DOI: 10.1021/cs501675t

  19. T. C. Wang, W. Bury, D. A. Gómez-Gualdrón, N. A. Vermeulen, J. E. Mondloch, P. Deria, K. Zhang, P. Z. Moghadam, A. A. Sarjeant, R. Q. Snurr, J. F. Stoddart, J. T. Hupp, and O. K. Farha, “Ultrahigh Surface Area Zirconium MOFs and Insights into the Applicability of the BET Theory,” J. Am. Chem. Soc., 2015, 137 (10), 3585–3591.
    DOI: 10.1021/ja512973b

  20. R. K. Carlson, G. Li Manni, A. L. Sonnenberger, D. G. Truhlar, and L. Gagliardi, “Multiconfiguration Pair-Density Functional Theory: Barrier Heights and Main Group and Transition Metal Energetics,” J. Chem. Theory Comput., 2015, 11 (1), 82–90.
    DOI: 10.1021/ct5008235

  21. R. J. Eisenhart, R. K. Carlson, K. M. Boyl, L. Gagliardi, and C. C. Lu, “Synthesis and redox reactivity of a phosphine-ligated dichromium paddlewheel,” Inorg. Chim. Acta, 2015, 424, 336–344.
    DOI: 10.1016/j.ica.2014.10.013



2014


  1. B. Wang, S. L. Li, and D. G. Truhlar, “Modeling the Partial Atomic Charges in Inogranometallic Molecules and Solids and Charge Redistribution in Lithium-Ion Cathodes,” J. Chem. Theory Comput., 2014, 10 (12), 5640–5650.
    DOI: 10.1021/ct500790p

  2. K. Duanmu and D. G. Truhlar, “Partial Ionic Character Beyond the Pauling Paradigm: Metal Nanoparticles,” J. Phys. Chem. C, 2014, 118 (48), 28069–28074.
    (featured in C & E News).
    DOI: 10.1021/jp511055k







This work was supported as part of the Inorganometallic Catalyst Design Center, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award DE-SC0012702.

Department of Energy logo




Contact Information

Department of Chemistry

207 Pleasant Street SE, Minneapolis, MN, 55455

P: 612-301-1491 | E: icdc@umn.edu

For Students, Faculty, and Staff

© 2015 Regents of the University of Minnesota. All rights reserved. The University of Minnesota is an equal opportunity educator and employer. Privacy Statement